4.7 Article

A transcriptional sketch of a primary human breast cancer by 454 deep sequencing

Journal

BMC GENOMICS
Volume 10, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2164-10-163

Keywords

-

Funding

  1. CARIPLO
  2. Large Laboratories [RBLA03ER38]
  3. Net2Drug [037590]
  4. CARIPLO-NOBEL
  5. Australian Research Council [FF0561986, S00001543]
  6. National Health and Medical Research Council [DP456080]
  7. United States National Science Foundation
  8. Associazione Italiana per la Ricerca sul Cancro Funding Source: Custom

Ask authors/readers for more resources

Background: The cancer transcriptome is difficult to explore due to the heterogeneity of quantitative and qualitative changes in gene expression linked to the disease status. An increasing number of unconventional transcripts, such as novel isoforms, non-coding RNAs, somatic gene fusions and deletions have been associated with the tumoral state. Massively parallel sequencing techniques provide a framework for exploring the transcriptional complexity inherent to cancer with a limited laboratory and financial effort. We developed a deep sequencing and bioinformatics analysis protocol to investigate the molecular composition of a breast cancer poly(A)(+) transcriptome. This method utilizes a cDNA library normalization step to diminish the representation of highly expressed transcripts and biology-oriented bioinformatic analyses to facilitate detection of rare and novel transcripts. Results: We analyzed over 132,000 Roche 454 high-confidence deep sequencing reads from a primary human lobular breast cancer tissue specimen, and detected a range of unusual transcriptional events that were subsequently validated by RT-PCR in additional eight primary human breast cancer samples. We identified and validated one deletion, two novel ncRNAs (one intergenic and one intragenic), ten previously unknown or rare transcript isoforms and a novel gene fusion specific to a single primary tissue sample. We also explored the non-protein-coding portion of the breast cancer transcriptome, identifying thousands of novel non-coding transcripts and more than three hundred reads corresponding to the non-coding RNA MALAT1, which is highly expressed in many human carcinomas. Conclusion: Our results demonstrate that combining 454 deep sequencing with a normalization step and careful bioinformatic analysis facilitates the discovery and quantification of rare transcripts or ncRNAs, and can be used as a qualitative tool to characterize transcriptome complexity, revealing many hitherto unknown transcripts, splice isoforms, gene fusion events and ncRNAs, even at a relatively low sequence sampling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available