4.4 Article

Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle

Journal

BMC GENETICS
Volume 14, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2156-14-49

Keywords

Daughter pregnancy rate; Fertility; Dairy cattle; SNP; Candidate gene

Funding

  1. Florida Dairy Checkoff Program
  2. Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture [2013-68004, 2013-20365]
  3. ARS [813345, ARS-0423282] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Background: Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low-heritability traits. Semen from 550 Holstein bulls of high (>= 1.7; n = 288) or low (<= -2; n = 262) daughter pregnancy rate (DPR) was genotyped for 434 candidate SNPs using the Sequenom MassARRAY (R) system. Three types of SNPs were evaluated: SNPs previously reported to be associated with reproductive traits or physically close to genetic markers for reproduction, SNPs in genes that are well known to be involved in reproductive processes, and SNPs in genes that are differentially expressed between physiological conditions in a variety of tissues associated in reproductive function. Eleven reproduction and production traits were analyzed. Results: A total of 40 SNPs were associated (P < 0.05) with DPR. Among these were genes involved in the endocrine system, cell signaling, immune function and inhibition of apoptosis. A total of 10 genes were regulated by estradiol. In addition, 22 SNPs were associated with heifer conception rate, 33 with cow conception rate, 36 with productive life, 34 with net merit, 23 with milk yield, 19 with fat yield, 13 with fat percent, 19 with protein yield, 22 with protein percent, and 13 with somatic cell score. The allele substitution effect for SNPs associated with heifer conception rate, cow conception rate, productive life and net merit were in the same direction as for DPR. Allele substitution effects for several SNPs associated with production traits were in the opposite direction as DPR. Nonetheless, there were 29 SNPs associated with DPR that were not negatively associated with production traits. Conclusion: SNPs in a total of 40 genes associated with DPR were identified as well as SNPs for other traits. It might be feasible to include these SNPs into genomic tests of reproduction and other traits. The genes associated with DPR are likely to be important for understanding the physiology of reproduction. Given the large number of SNPs associated with DPR that were not negatively associated with production traits, it should be possible to select for DPR without compromising production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available