3.8 Article

Strain rate sensitivity and mechanical anisotropy of selective laser melted 17-4 PH stainless steel

Journal

MECHANICAL ENGINEERING JOURNAL
Volume 1, Issue 5, Pages -

Publisher

JAPAN SOC MECHANICAL ENGINEERS
DOI: 10.1299/mej.2014smm0049

Keywords

Additive manufacturing; Selective laser melting; Split-Hopkinson bar; 17-4 PH; Stainless steel

Ask authors/readers for more resources

Quasi-static and dynamic tensile testing was performed upon machined tensile specimens fabricated from bulk primitives produced by the consolidation of water atomized, 17-4 precipitation hardened stainless steel powder by layer-based, selective laser melting. Such mechanical evaluation was performed by a screw-driven uniaxial tension testing machine and a split-Hopkinson tensile bar apparatus. Strain rates evaluated include 10(-3), 10(-1) and 10(3) s(-1). Prior to tensile testing, specimens underwent additional thermal processing in accordance with industry standards. Evaluations of the solution heat treatment and peak-age conditions were made alongside similarly prepared, but traditionally processed specimens meeting the same material standard for chemistry (drawn rod). Tensile strength across all strain rates is higher for these selective laser melted (SLM) specimens as a result of microstructure refinement through rapid melt, solidification and cooling during processing. Ultimate tensile and yield strengths increase with increasing strain rate and show no preferential direction relative to the building direction. Elongation anisotropy is observed as a consequence of directional porosity stemming from pores limited to within individual layers. Specimens loaded normal to the SLM building plane commonly rupture at small elongation because of this mechanical fibering from the selective laser melting process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available