4.4 Article

Cooperative social clusters are not destroyed by dispersal in a ciliate

Journal

BMC EVOLUTIONARY BIOLOGY
Volume 9, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2148-9-251

Keywords

-

Funding

  1. Belgian Fund for Scientific Research
  2. UCL
  3. CUNY
  4. Agence National de la Recherche [ANR-05-BLAN-026502]
  5. Centre National de la Recherche Scientifique
  6. European Research Training Network ModLife [HPRN-CT-2000-00051]

Ask authors/readers for more resources

Background: The evolution of social cooperation is favored by aggregative behavior to facilitate stable social structure and proximity among kin. High dispersal rates reduce group stability and kin cohesion, so it is generally assumed that there is a fundamental trade-off between cooperation and dispersal. However, empirical tests of this relationship are rare. We tested this assumption experimentally using ten genetically isolated strains of a ciliate, Tetrahymena thermophila. Results: The propensity for social aggregation was greater in strains with reduced cell quality and lower growth performance. While we found a trade-off between costly aggregation and local dispersal in phenotypic analyses, aggregative strains showed a dispersal polymorphism by producing either highly sedentary or long-distance dispersive cells, in contrast to less aggregative strains whose cells were monomorphic local dispersers. Conclusion: High dispersal among aggregative strains may not destroy group stability in T. thermophila because the dispersal polymorphism allows social strains to more readily escape kin groups than less aggregative strains, yet still benefit from stable group membership among sedentary morphs. Such dispersal polymorphisms should be common in other social organisms, serving to alter the nature of the negative impact of dispersal on social evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available