3.8 Article

A study on Si and P doped h-BN sheets: DFT calculations

Journal

TURKISH JOURNAL OF PHYSICS
Volume 38, Issue 3, Pages 369-374

Publisher

SCIENTIFIC TECHNICAL RESEARCH COUNCIL TURKEY-TUBITAK
DOI: 10.3906/fiz-1406-17

Keywords

h-BN sheet; density functional theory; point defects

Ask authors/readers for more resources

Structural properties and energetics of silicon and phosphorus doped hexagonal boron nitride sheets were investigated by performing density functional theory calculations. The dopant atoms were substituted in a neutral charge state at either the B or the N site in the system as an impurity. All the systems under consideration were fully optimized. A systematic study was performed to see the effect of cell size on the calculated quantities, such as bond length, charge transfer, and defect formation energies. It was found that both silicon and phosphorus atom substitutions cause the bond lengths to increase with respect to the pristine sheets. Si atom replaced on the N site yields relatively large charge transfer from Si to the lattice. Substitutions of Si at the B site and of P at the N site are exothermic processes, while for the other cases the processes are endothermic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available