4.2 Article

Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway

Journal

Publisher

BMC
DOI: 10.1186/1472-6882-12-82

Keywords

Parkinson's disease; (-) epigallocatechin 3 gallate; PC12 cells; PGC 1 alpha; SIRT1

Funding

  1. Fujian Province Science and Technology Department [2007 F3035]

Ask authors/readers for more resources

Background: Parkinson's disease is a high incidence neurodegenerative disease in elderly people, and oxidative stress plays an important role in the pathogenesis. Oxygen metabolism in the brain is high, which lacks an antioxidative protection mechanism. Recently, it has been found that polyphenols play an important role in antioxidation. (-)-epigallocatechin-3-gallate (EGCG) is an important component of tea polyphenols and its biological effects, such as strong antioxidation, scavenging of free radicals and anti-apoptosis, can pass through the blood brain barrier. The SIRT1/PGC-1 alpha signaling pathway has not been reported in PC12 cells. Therefore, research of the protective mechanism of EGCG in PC12 cells damaged by -methyl-4-phenyl-pyridine (MMP+) may provide a new insight into protect against and treatment of Parkinson's disease. Methods: MPP+-treated highly differentiated PC12 cells were used as the in vitro cell model. An MTT assay was used to investigate cell viability after EGCG treatment, a dichlorofluorescin diacetate assay was used to measure reactive oxygen species (ROS) production, western blot analysis was used to observe PGC-1 alpha and SIRT1 protein expression, and real-time PCR to observe PGC-1 alpha, SOD1 and GPX1 mRNA expression. Results: PC12 cell viability was significantly reduced after MPP+ treatment by 11.46% compared with that of the control (P < 0.05). However, cell viability was unchanged by 10 mu mol/L EGCG treatment. In co-treatments with EGCG and MPP+, cell viability was significantly increased by 12.92% (P < 0.05) and MPP+-induced ROS production was markedly decreased. PGC-1 alpha mRNA expression was obviously upregulated by 21.51% (P < 0.05), and SOD1 and GPX1 mRNA expression was slightly increased by 12.94% and 15.63% (P > 0.05), respectively, by treatment with EGCG and then MPP+ for 12 h. The mRNA expression of PGC-1 alpha, SOD1 and GPX1 was increased by 25.17%, 40% and 146% (all P < 0.05), respectively, by treatment with EGCG and then MPP+ for 24 h. Such effects were not observed with MPP+ treatment alone. Conclusion: The SIRT1/PGC-1 alpha pathway is one of the mechanisms of EGCG suppression of MPP+-induced injury of PC12 cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available