3.8 Article

Tranilast administration reduces fibrosis and improves fatigue resistance in muscles of mdx dystrophic mice

Journal

FIBROGENESIS & TISSUE REPAIR
Volume 7, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1755-1536-7-1

Keywords

-

Categories

Funding

  1. University of Melbourne
  2. National Health and Medical Research Council

Ask authors/readers for more resources

Background: Duchenne muscular dystrophy (DMD) is a severe and progressive muscle-wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilising protein dystrophin. Dystrophic muscle fibres are susceptible to injury and degeneration, and impaired muscle regeneration is associated with fibrotic deposition that limits the efficacy of potential pharmacological, cell-and gene-based therapies. Novel treatments that can prevent or attenuate fibrosis have important clinical merit for DMD and related neuromuscular diseases. We investigated the therapeutic potential for tranilast, an orally bioavailable anti-allergic agent, to prevent fibrosis in skeletal muscles of mdx dystrophic mice. Results: Three-week-old C57Bl/10 and mdx mice received tranilast (similar to 300 mg/kg) in their food for 9 weeks, after which fibrosis was assessed through histological analyses, and functional properties of tibialis anterior muscles were assessed in situ and diaphragm muscle strips in vitro. Tranilast administration did not significantly alter the mass of any muscles in control or mdx mice, but it decreased fibrosis in the severely affected diaphragm muscle by 31% compared with untreated mdx mice (P < 0.05). A similar trend of decreased fibrosis was observed in the tibialis anterior muscles of mdx mice (P = 0.10). These reductions in fibrotic deposition were not associated with improvements in maximum force-producing capacity, but we did observe small but significant improvements in the resistance to fatigue in both the diaphragm and TA muscles of mdx mice treated with tranilast. Conclusion: Together these findings demonstrate that administration of potent antifibrotic compounds such as tranilast could help preserve skeletal muscle structure, which could ultimately increase the efficacy of pharmacological, cell and gene replacement/correction therapies for muscular dystrophy and related disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available