4.6 Article

A method for increasing expressivity of Gene Ontology annotations using a compositional approach

Journal

BMC BIOINFORMATICS
Volume 15, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2105-15-155

Keywords

Gene Ontology; Functional annotation; Annotation extension; Manual curation

Funding

  1. National Human Genome Research Institute (NHGRI)
  2. British Heart Foundation grants [SP/07/007/23671, RG/13/5/30112]
  3. Wellcome Trust grant [WT090548MA]
  4. Kidney Research UK [RP26/2008]
  5. European Molecular Biology Laboratory
  6. NIH [4U41HG006104-04]
  7. US National Human Genome Research Institute [U41-HG002223]
  8. British Medical Research Council [G070119]
  9. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]
  10. [U41-HG22073]
  11. British Heart Foundation [SP/07/007/23671, RG/13/5/30112] Funding Source: researchfish
  12. Parkinson's UK [G-1307] Funding Source: researchfish

Ask authors/readers for more resources

Background: The Gene Ontology project integrates data about the function of gene products across a diverse range of organisms, allowing the transfer of knowledge from model organisms to humans, and enabling computational analyses for interpretation of high-throughput experimental and clinical data. The core data structure is the annotation, an association between a gene product and a term from one of the three ontologies comprising the GO. Historically, it has not been possible to provide additional information about the context of a GO term, such as the target gene or the location of a molecular function. This has limited the specificity of knowledge that can be expressed by GO annotations. Results: The GO Consortium has introduced annotation extensions that enable manually curated GO annotations to capture additional contextual details. Extensions represent effector-target relationships such as localization dependencies, substrates of protein modifiers and regulation targets of signaling pathways and transcription factors as well as spatial and temporal aspects of processes such as cell or tissue type or developmental stage. We describe the content and structure of annotation extensions, provide examples, and summarize the current usage of annotation extensions. Conclusions: The additional contextual information captured by annotation extensions improves the utility of functional annotation by representing dependencies between annotations to terms in the different ontologies of GO, external ontologies, or an organism's gene products. These enhanced annotations can also support sophisticated queries and reasoning, and will provide curated, directional links between many gene products to support pathway and network reconstruction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available