4.6 Article

BayesPeak: Bayesian analysis of ChIP-seq data

Journal

BMC BIOINFORMATICS
Volume 10, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2105-10-299

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC)
  2. Cambridge Commonwealth Trust
  3. The University of Cambridge, Cancer Research UK
  4. Hutchison Whampoa Limited
  5. Cancer Research UK [19556] Funding Source: researchfish

Ask authors/readers for more resources

Background: High-throughput sequencing technology has become popular and widely used to study protein and DNA interactions. Chromatin immunoprecipitation, followed by sequencing of the resulting samples, produces large amounts of data that can be used to map genomic features such as transcription factor binding sites and histone modifications. Methods: Our proposed statistical algorithm, BayesPeak, uses a fully Bayesian hidden Markov model to detect enriched locations in the genome. The structure accommodates the natural features of the Solexa/Illumina sequencing data and allows for overdispersion in the abundance of reads in different regions. Moreover, a control sample can be incorporated in the analysis to account for experimental and sequence biases. Markov chain Monte Carlo algorithms are applied to estimate the posterior distributions of the model parameters, and posterior probabilities are used to detect the sites of interest. Conclusion: We have presented a flexible approach for identifying peaks from ChIP-seq reads, suitable for use on both transcription factor binding and histone modification data. Our method estimates probabilities of enrichment that can be used in downstream analysis. The method is assessed using experimentally verified data and is shown to provide high-confidence calls with low false positive rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available