4.6 Article

Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells

Journal

BMC BIOINFORMATICS
Volume 9, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2105-9-404

Keywords

-

Funding

  1. Grants-in-Aid for Scientific Research on Priority Areas
  2. Japan Society for the Promotion of Science for Young Scientist

Ask authors/readers for more resources

Background: Microarray technology has unveiled transcriptomic differences among tumors of various phenotypes, and, especially, brought great progress in molecular understanding of phenotypic diversity of breast tumors. However, compared with the massive knowledge about the transcriptome, we have surprisingly little knowledge about regulatory mechanisms underling transcriptomic diversity. Results: To gain insights into the transcriptional programs that drive tumor progression, we integrated regulatory sequence data and expression profiles of breast cancer into a Bayesian Network, and searched for cis-regulatory motifs statistically associated with given histological grades and prognosis. Our analysis found that motifs bound by ELK1, E2F, NRF1 and NFY are potential regulatory motifs that positively correlate with malignant progression of breast cancer. Conclusion: The results suggest that these 4 motifs are principal regulatory motifs driving malignant progression of breast cancer. Our method offers a more concise description about transcriptome diversity among breast tumors with different clinical phenotypes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available