3.9 Article

Na+-stimulated ATPase of alkaliphilic halotolerant cyanobacterium Aphanothece halophytica translocates Na+ into proteoliposomes via Na+ uniport mechanism

Journal

BMC BIOCHEMISTRY
Volume 11, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1471-2091-11-30

Keywords

-

Funding

  1. Thailand Research Fund [BRG 4880004]
  2. Commission on Higher Education, Thailand
  3. Royal Golden Jubilee Ph.D. program
  4. Chulalongkorn University
  5. Thai Government [TKK2555]

Ask authors/readers for more resources

Background: When cells are exposed to high salinity conditions, they develop a mechanism to extrude excess Na+ from cells to maintain the cytoplasmic Na+ concentration. Until now, the ATPase involved in Na+ transport in cyanobacteria has not been characterized. Here, the characterization of ATPase and its role in Na+ transport of alkaliphilic halotolerant Aphanothece halophytica were investigated to understand the survival mechanism of A. halophytica under high salinity conditions. Results: The purified enzyme catalyzed the hydrolysis of ATP in the presence of Na+ but not K+, Li+ and Ca2+. The apparent K-m values for Na+ and ATP were 2.0 and 1.2 mM, respectively. The enzyme is likely the F1F0-ATPase based on the usual subunit pattern and the protection against N,N'-dicyclohexylcarbodiimide inhibition of ATPase activity by Na+ in a pH-dependent manner. Proteoliposomes reconstituted with the purified enzyme could take up Na+ upon the addition of ATP. The apparent K-m values for this uptake were 3.3 and 0.5 mM for Na+ and ATP, respectively. The mechanism of Na+ transport mediated by Na+-stimulated ATPase in A. halophytica was revealed. Using acridine orange as a probe, alkalization of the lumen of proteoliposomes reconstituted with Na+-stimulated ATPase was observed upon the addition of ATP with Na+ but not with K+, Li+ and Ca2+. The Na+- and ATP-dependent alkalization of the proteoliposome lumen was stimulated by carbonyl cyanide m chlorophenylhydrazone (CCCP) but was inhibited by a permeant anion nitrate. The proteoliposomes showed both ATPase activity and ATP-dependent Na+ uptake activity. The uptake of Na+ was enhanced by CCCP and nitrate. On the other hand, both CCCP and nitrate were shown to dissipate the preformed electric potential generated by Na+-stimulated ATPase of the proteoliposomes. Conclusion: The data demonstrate that Na+-stimulated ATPase from A. halophytica, a likely member of F-type ATPase, functions as an electrogenic Na+ pump which transports only Na+ upon hydrolysis of ATP. A secondary event, Na+- and ATP-dependent H+ efflux from proteoliposomes, is driven by the electric potential generated by Na+-stimulated ATPase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available