4.6 Article

Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene

Journal

RSC ADVANCES
Volume 5, Issue 51, Pages 41307-41316

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra04699h

Keywords

-

Funding

  1. National Basic Research Program of China (973 Program) [2014CB931804]
  2. Natural Science Foundation of Jiangsu Province [BK20130369]
  3. Research Grants Council of the Hong Kong Special Administrative Region, China [9042047, CityU 11208914]

Ask authors/readers for more resources

Reduced graphene oxide (RGO) is functionalized with a solid acid, phosphomolybdic acid (PMoA), via electrostatic interactions. RGO and PMoA in this nanohybrid (PMoA-RGO) exhibit strong interactions and the surface characteristic of the graphene nanosheets is modified. RGO and PMoA-RGO are blended with polypropylene (PP) and maleic anhydride grafted polypropylene via a master batch-based melt mixing method. Thermal stability, mechanical and flame retardancy properties of the nanocomposites are investigated. This nanohybrid greatly improves the stiffness and thermal-oxidative stability of PP. Compared to the neat sample, the onset decomposition temperature (T-onset) and the temperature at the maximum weight loss rate (T-max) of the nanocomposite increase by as much as 44 degrees C and 34 degrees C, respectively, at just 1 wt% loading of PMoA-RGO. Remarkable enhancements of the storage modulus in the glassy region and heat deflection temperature are obtained in PMoA-RGO/PP nanocomposites. The nanohybrid exhibits more marked reinforcing effects than the RGO. The heat release of the nanocomposites during the combustion is considerably reduced compared to neat PP. The improved thermal-oxidative stability and flame retardant properties of PP nanocomposites are mainly attributed to the barrier effect of graphene, in tandem with the enhanced radical trapping property of the nanohybrid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available