4.7 Article

Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells

Journal

BLOOD
Volume 121, Issue 14, Pages E98-E107

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2012-03-420273

Keywords

-

Categories

Funding

  1. Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health
  2. NIH Center for Regenerative Medicine

Ask authors/readers for more resources

A variety of somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs), but CD34(+) hematopoietic stem cells (HSCs) present in nonmobilized peripheral blood (PB) would be a convenient target. We report a method for deriving iPSC from PB HSCs using immunobead purification and 2- to 4-day culture to enrich CD34(+) HSCs to 80% +/- 9%, followed by reprogramming with loxP-flanked polycistronic (human Oct4, Klf4, Sox2, and c-Myc) STEMCCA-loxP lentivector, or with Sendai vectors. Colonies arising with STEMCCA-loxP were invariably TRA-1-60(+), yielding 5.3 +/- 2.8 iPSC colonies per 20 mL PB (n = 17), where most colonies had single-copy STEMCCA-loxP easily excised by transient Cre expression. Colonies arising with Sendai were variably reprogrammed (10%-80% TRA-1-60(+)), with variable yield (6 to >500 TRA-1-60(+) iPSC colonies per 10 mL blood; n = 6). Resultant iPSC clones expressed pluripotent cell markers and generated teratomas. Genomic methylation patterns of STEMCCA-loxP-reprogrammed clones closely matched embryonic stem cells. Furthermore, we showed that iPSCs are derived from the nonmobilized CD34(+) HSCs enriched from PB rather than from any lymphocyte or monocyte contaminants because they lack somatic rearrangements typical of T or B lymphocytes and because purified CD14(+) monocytes do not yield iPSC colonies under these reprogramming conditions. (Blood. 2013;121(14):e98-e107)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available