4.7 Article

Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix

Journal

BLOOD
Volume 118, Issue 3, Pages 804-815

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2010-12-327338

Keywords

-

Categories

Funding

  1. AHA-Scientist Development
  2. March of Dimes Basil
  3. National Institutes of Health [U54CA143868]

Ask authors/readers for more resources

Understanding the role of the extracellular matrix (ECM) in vascular morphogenesis has been possible using natural ECMs as in vitro models to study the underlying molecular mechanisms. However, little is known about vascular morphogenesis in synthetic matrices where properties can be tuned toward both the basic understanding of tubulogenesis in modular environments and as a clinically relevant alternative to natural materials for regenerative medicine. We investigated synthetic, tunable hyaluronic acid HA) hydrogels and determined both the adhesion and degradation parameters that enable human endothelial colony-forming cells (ECFCs) to form efficient vascular networks. Entrapped ECFCs underwent tubulogenesis dependent on the cellular interactions with the HA hydrogel during each stage of vascular morphogenesis. Vacuole and lumen formed through integrins alpha(5)beta(1) and alpha(V)beta(3), while branching and sprouting were enabled by HA hydrogel degradation. Vascular networks formed within HA hydrogels containing ECFCs anastomosed with the host's circulation and supported blood flow in the hydrogel after transplantation. Collectively, we show that the signaling pathways of vascular morphogenesis of ECFCs can be precisely regulated in a synthetic matrix, resulting in a functional microvasculature useful for the study of 3-dimensional vascular biology and toward a range of vascular disorders and approaches in tissue regeneration. (Blood. 2011;118(3):804-815)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available