4.7 Article

Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγnull humanized mice

Journal

BLOOD
Volume 117, Issue 11, Pages 3076-3086

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2010-08-301507

Keywords

-

Categories

Funding

  1. National Center for Research Resources, a component of the National Institutes of Health [CCL3001018, UL1 RR024143]
  2. Emory University [U19 AI057266]
  3. National Institutes of Health through the National Institutes of Health Roadmap for Medical Research [1 R01 DK085713-01]
  4. Greenberg Medical Institute
  5. Deutsche Forschungsgemeinschaft

Ask authors/readers for more resources

Human hematolymphoid mice have become valuable tools for the study of human hematopoiesis and uniquely human pathogens in vivo. Recent improvements in xenorecipient strains allow for long-term reconstitution with a human immune system. However, certain hematopoietic lineages, for example, the myeloid lineage, are underrepresented, possibly because of the limited cross-reactivity of murine and human cytokines. Therefore, we created a nonobese diabetic/severe combined immunodeficiency/interleukin2 receptor-gamma-null (NOD-SCID IL2R gamma(null)) mouse strain that expressed human stem cell factor, granulocyte-macrophage colony-stimulating factor, and interleukin-3, termed NSG-SGM3. Transplantation of CD34(+) human hematopoietic stem cells into NSG-SGM3 mice led to robust human hematopoietic reconstitution in blood, spleen, bone marrow, and liver. Human myeloid cell frequencies, specifically, myeloid dendritic cells, were elevated in the bone marrow of humanized NSG-SGM3 mice compared with nontransgenic NSG recipients. Most significant, however, was the increase in the CD4(+)FoxP3(+) regulatory T-cell population in all compartments analyzed. These CD4(+)FoxP3(+) regulatory T cells were functional, as evidenced by their ability to suppress T-cell proliferation. In conclusion, humanized NSGSGM3 mice might serve as a useful model to study human regulatory T-cell development in vivo, but this unexpected lineage skewing also highlights the importance of adequate spatiotemporal expression of human cytokines for future xenorecipient strain development. (Blood. 2011; 117(11): 3076-3086)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available