4.6 Article

NEUTRINO-DRIVEN EXPLOSION OF A 20 SOLAR-MASS STAR IN THREE DIMENSIONS ENABLED BY STRANGE-QUARK CONTRIBUTIONS TO NEUTRINO-NUCLEON SCATTERING

Journal

ASTROPHYSICAL JOURNAL LETTERS
Volume 808, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2041-8205/808/2/L42

Keywords

hydrodynamics; instabilities; neutrinos; supernovae: general

Funding

  1. DFG [EXC 153]
  2. ERC-AdG [341157-COCO2-CASA]
  3. ARC through DECRA [DE150101145]

Ask authors/readers for more resources

Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism, or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the PROMETHEUS-VERTEX code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 M-circle dot progenitor star that a moderate strangeness-dependent contribution of g(a)(s) = -0.2 to the axial-vector coupling constant g(a) approximate to 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is in the direction of current experimental results and reduces the neutral-current scattering opacity of neutrons, which dominate in the medium around and above the neutrinosphere. This leads to increased luminosities and mean energies of all neutrino species and strengthens the neutrino-energy deposition in the heating layer. Higher nonradial kinetic energy in the gain layer signals enhanced buoyancy activity that enables the onset of the explosion at similar to 300 ms after bounce, in contrast to the model with vanishing strangeness contributions to neutrino-nucleon scattering. Our results demonstrate the close proximity to explosion of the previously published, unsuccessful 3D models of the Garching group.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available