4.7 Article

Myeloperoxidase attracts neutrophils by physical forces

Journal

BLOOD
Volume 117, Issue 4, Pages 1350-1358

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2010-05-284513

Keywords

-

Categories

Funding

  1. Deutsche Forschungsgemeinschaft
  2. Deutsche Herzstiftung
  3. Werner Otto Stiftung
  4. Academy of Science Czech Republic [M200040908]
  5. Netherlands Organization for Scientific Research [VIDI 91766341]

Ask authors/readers for more resources

Recruitment of polymorphonuclear neutrophils (PMNs) remains a paramount prerequisite in innate immune defense and a critical cofounder in inflammatory vascular disease. Neutrophil recruitment comprises a cascade of concerted events allowing for capture, adhesion and extravasation of the leukocyte. Whereas PMN rolling, binding, and diapedesis are well characterized, receptor-mediated processes, mechanisms attenuating the electrostatic repulsion between the negatively charged glycocalyx of leukocyte and endothelium remain poorly understood. We provide evidence for myeloperoxidase (MPO), an abundant PMN-derived heme protein, facilitating PMN recruitment by its positive surface charge. In vitro, MPO evoked highly directed PMN motility, which was solely dependent on electrostatic interactions with the leukocyte's surface. In vivo, PMN recruitment was shown to be MPO-dependent in a model of hepatic ischemia and reperfusion, upon intraportal delivery of MPO and in the cremaster muscle exposed to local inflammation or to intraarterial MPO application. Given MPO's affinity to both the endothelial and the leukocyte's surface, MPO evolves as a mediator of PMN recruitment because of its positive surface charge. This electrostatic MPO effect not only displays a so far unrecognized, catalysis-independent function of the enzyme, but also highlights a principal mechanism of PMN attraction driven by physical forces. (Blood. 2011; 117(4):1350-1358)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available