4.7 Article

Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments

Journal

BIOGEOSCIENCES
Volume 13, Issue 5, Pages 1621-1633

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-13-1621-2016

Keywords

-

Funding

  1. EU 7th Framework Programme NitroEurope [8-2/T6018PKPK06]
  2. Technical University of Denmark
  3. Academy of Finland [263858, 288494]
  4. Academy of Finland Centre of Excellence [1118615]
  5. Maj Tor Nessling Foundation
  6. Estonian Science Foundation through SA Archimedes (DoRa)
  7. Estonian Ministry of Science and Education [IUT-8-3]
  8. European Commission through the European Regional Fund (the Center of Excellence in Environmental Adaptation)
  9. Flemish fund for scientific research (FWO)
  10. Natural Environment Research Council [ceh010010] Funding Source: researchfish

Ask authors/readers for more resources

Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such changes could potentially alter litter decomposition. Litter transplantation experiments were carried out across six European sites (four forests and two grasslands) spanning a large geographical and climatic gradient (5.6-11.4 degrees C in annual temperature 511-878mm in precipitation) to gain insight into the climatic controls on litter decomposition as well as the effect of litter origin and species. The decomposition k rates were overall higher in warmer and wetter sites than in colder and drier sites, and positively correlated with the litter total specific leaf area. Also, litter N content increased as less litter mass remained and decay went further. Surprisingly, this study demonstrates that climatic controls on litter decomposition are quantitatively more important than species or site of origin. Cumulative climatic variables, precipitation, soil water content and air temperature (ignoring days with air temperatures below zero degrees Celsius), were appropriate to predict the litter remaining mass during decomposition (M-r). M-r and cumulative air temperature were found to be the best predictors for litter carbon and nitrogen remaining during the decomposition. Using mean annual air temperature, precipitation, soil water content and litter total specific leaf area as parameters we were able to predict the annual decomposition rate (k) accurately.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available