4.7 Article

Analysis of novel sph (spherocytosis) alleles in mice reveals allele-specific loss of band 3 and adducin in α-spectrin-deficient red cells

Journal

BLOOD
Volume 115, Issue 9, Pages 1804-1814

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2009-07-232199

Keywords

-

Categories

Funding

  1. National Institutes of Health [HL088468, HL075714, HL081608]
  2. Jackson Laboratory Mouse Mutant Resource [RR01183]
  3. National Cancer Institute [CA34196]

Ask authors/readers for more resources

Five spontaneous, allelic mutations in the alpha-spectrin gene, Spna1, have been identified in mice (spherocytosis [sph], sph(1J), sph(2J), sph(2BC), sph(Dem)). All cause severe hemolytic anemia. Here, analysis of 3 new alleles reveals previously unknown consequences of red blood cell (RBC) spectrin deficiency. In sph(3J), a missense mutation (H2012Y) in repeat 19 introduces a cryptic splice site resulting in premature termination of translation. In sph(Ihj), a premature stop codon occurs (Q1853Stop) in repeat 18. Both mutations result in markedly reduced RBC membrane spectrin content, decreased band 3, and absent beta-adducin. Reevaluation of available, previously described sph alleles reveals band 3 and adducin deficiency as well. In sph(4J), a missense mutation occurs in the C-terminal EF hand domain (C2384Y). Notably, an equally severe hemolytic anemia occurs despite minimally decreased membrane spectrin with normal band 3 levels and present, although reduced, beta-adducin. The severity of anemia in sph(4J) indicates that the highly conserved cysteine residue at the C-terminus of alpha-spectrin participates in interactions critical to membrane stability. The data reinforce the notion that a membrane bridge in addition to the classic protein 4.1-p55-glycophorin C linkage exists at the RBC junctional complex that involves interactions between spectrin, adducin, and band 3. (Blood. 2010;115:1804-1814)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available