4.7 Article

The Link between the North Pacific Climate Variability and the North Atlantic Oscillation via Downstream Propagation of Synoptic Waves

Journal

JOURNAL OF CLIMATE
Volume 28, Issue 10, Pages 3957-3976

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-14-00552.1

Keywords

-

Ask authors/readers for more resources

The North Atlantic Oscillation (NAO) response to the northeast Pacific climate variability is examined using the ERA-40 dataset. The main objective is to validate a mechanism involving downstream wave propagation processes proposed in a recent idealized companion study: a low-frequency planetary-scale ridge (trough) anomaly located in the eastern Pacific-North American sector induces more equatorward (pole-ward) propagation of synoptic-scale wave packets on its downstream side, which favors the occurrence of anticyclonic (cyclonic) wave breakings in the Atlantic sector and the positive (negative) NAO phase. The mechanism first provides an interpretation of the canonical impact of the El Nino-Southern Oscillation on the NAO in late winter. The wintertime relationship between the Pacific-North American oscillation (PNA) and the NAO is also investigated. For out-of-phase fluctuations between the PNA and NAO indices (i.e., the most recurrent situation in late winter), the eastern Pacific PNA ridge (trough) anomaly modifies the direction of downstream wave propagation, triggering more anticyclonic (cyclonic) wave breakings over the North Atlantic. For in-phase fluctuations, the effect of the eastern Pacific PNA anomalies is cancelled out by the North American PNA anomalies. The latter anomalies being deeper and more centered in the latitudinal band of downstream wave propagation, they are able to reverse the direction of wave propagation just before waves enter the Atlantic domain. The contrasting relationship between the PNA and NAO is similar to what occurs for the two leading hemispheric EOFs of geopotential height: the northern annular mode (NAM) and the cold ocean-warm land (COWL) pattern. The proposed mechanism provides a physical meaning for the NAM and COWL patterns.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available