4.7 Article

Hypercholesterolemia promotes bone marrow cell mobilization by perturbing the SDF-1:CXCR4 axis

Journal

BLOOD
Volume 115, Issue 19, Pages 3886-3894

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2009-08-240580

Keywords

-

Categories

Funding

  1. Fundacao para a Ciencia e a Tecnologia (FCT, Portuguese Government)
  2. GlaxoSmithKline

Ask authors/readers for more resources

Hypercholesterolemia is associated with elevated peripheral blood leukocytes and increased platelet levels, generally attributed to cholesterol-induced proinflammatory cytokines. Bone marrow (BM) cell mobilization and platelet production is achieved by disrupting the SDF-1:CXCR4 axis, namely with granulocyte colony-stimulating factor and/or CXCR4 antagonists. Here we show that high cholesterol disrupts the BM SDF-1:CXCR4 axis; promotes the mobilization of B cells, neutrophils, and progenitor cells (HPCs); and creates thrombocytosis. Hypercholesterolemia was achieved after a 30-day high-cholesterol feeding trial, resulting in elevated low-density lipoprotein (LDL) cholesterol levels and inversion of the LDL to high-density lipoprotein cholesterol ratio. Hypercholesterolemic mice displayed lymphocytosis, increased neutrophils, HPCs, and thrombocytosis with a lineage-specific decrease in the BM. Histologic analysis revealed that megakaryocyte numbers remained unaltered but, in high-cholesterol mice, they formed large clusters in contact with BM vessels. In vitro, LDL induced stromal cell-derived factor-1 (SDF-1) production, suggesting that megakaryocyte delocalization resulted from an altered SDF-1 gradient. LDL also stimulated B cells and HPC migration toward SDF-1, which was blocked by scavenger receptor class B type I (cholesterol receptor) inhibition. Accordingly, hypercholesterolemic mice had increased peripheral blood SDF-1 levels, increased platelets, CXCR4-positive B lymphocytes, neutrophils, and HPCs. High cholesterol interferes with the BM SDF-1:CXCR4 axis, resulting in lymphocytosis, thrombocytosis, and HPC mobilization. (Blood. 2010; 115(19):3886-3894)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available