4.7 Article

High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival

Journal

BLOOD
Volume 112, Issue 8, Pages 3412-3424

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2007-11-122028

Keywords

-

Categories

Funding

  1. Canadian Institutes of Health Research (CIHR)
  2. Leukemia and Lymphoma Society of Canada and Canadian Cancer Society
  3. Genome Canada
  4. Michael Smith Foundation for Health Research (MSFHR)

Ask authors/readers for more resources

Myelodysplastic syndromes (MDSs) pose an important diagnostic and treatment challenge because of the genetic heterogeneity and poorly understood biology of the disease. To investigate initiating genomic alterations and the potential prognostic significance of cryptic genomic changes in low-risk MDS, we performed whole genome tiling path array comparative genomic hybridization (aCGH) on CD34(+) cells from 44 patients with an International Prognostic Scoring System score less than or equal to 1.0. Clonal copy number differences were detected in cells from 36 of 44 patients. In contrast, cells from only 16 of the 44 patients displayed karyotypic abnormalities. Although most patients had normal karyotype, aCGH identified 21 recurring copy number alterations. Examples of frequent cryptic alterations included gains at 11q24.2-qter, 17q11.2, and 17q12 and losses at 2q33.1-q33.2, 5q13.1-q13.2, and 10q21.3. Maintenance of genomic integrity defined as less than 3 Mb total disruption of the genome correlated with better overall survival (P = .002) and was less frequently associated with transformation to acute myeloid leukemia (P = .033). This study suggests a potential role for the use of aCGH in the clinical workup of MDS patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available