4.7 Article

Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4

Journal

BLOOD
Volume 113, Issue 9, Pages 2047-2055

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2008-05-160564

Keywords

-

Categories

Funding

  1. National Institutes of Health (NIH, Bethesda, MD) [AI058228, HL34303, HL81151, GM61031, GM008947, HL68628, HL55549]
  2. Immunodeficiency Foundation (IDF, Towson, MD)

Ask authors/readers for more resources

Chronic granulomatous disease (CGD) is characterized by overexuberant inflammation and autoimmunity that are attributed to deficient anti-inflammatory signaling. Although regulation of these processes is complex, phosphatidylserine (PS) dependent recognition and removal of apoptotic cells (efferocytosis) by phagocytes are potently anti-inflammatory. Since macrophage phenotype also plays a beneficial role in resolution of inflammation, we hypothesized that impaired efferocytosis in CGD due to macrophage skewing contributes to enhanced inflammation. Here we demonstrate that efferocytosis by macrophages from CGD (gp91(phox-/-)) mice was suppressed ex vivo and in vivo. Alternative activation with interleukin 4 (IL-4) normalized CGD macrophage efferocytosis, whereas classical activation by lipopolysaccharide (LPS) plus interferon gamma (IFN gamma) had no effect. Importantly, neutralization of IL-4 in wildtype macrophages reduced macrophage efferocytosis, demonstrating a central role for IL-4. This effect was shown to involve 12/15 lipoxygenase and activation of peroxisome-proliferator activated receptor gamma (PPAR gamma). Finally, injection of PS (whose exposure is lacking on CGD apoptotic neutrophils) in vivo restored IL-4-dependent macrophage reprogramming and efferocytosis via a similar mechanism. Taken together, these findings support the hypothesis that impaired PS exposure on dying cells results in defective macrophage programming, with consequent efferocytic impairment and has important implications in understanding the underlying cause of enhanced inflammation in CGD. (Blood. 2009; 113: 2047-2055)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available