4.5 Article

Revisiting carbonate chemistry controls on planktic foraminifera Mg/Ca: implications for sea surface temperature and hydrology shifts over the Paleocene Eocene Thermal Maximum and Eocene Oligocene transition

Journal

CLIMATE OF THE PAST
Volume 12, Issue 4, Pages 819-835

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/cp-12-819-2016

Keywords

-

Funding

  1. Natural Environment Research Council (NERC) [NE/G014817]
  2. ISF [551/10]
  3. EU
  4. NERC [NE/G014817/1] Funding Source: UKRI
  5. Natural Environment Research Council [NE/G014817/1] Funding Source: researchfish

Ask authors/readers for more resources

Much of our knowledge of past ocean temperatures comes from the foraminifera Mg / Ca palaeothermometer. Several nonthermal controls on foraminifera Mg incorporation have been identified, of which vital effects, salinity, and secular variation in seawater Mg / Ca are the most commonly considered. Ocean carbonate chemistry is also known to influence Mg / Ca, yet this is rarely examined as a source of uncertainty, either because (1) precise pH and [C032 I reconstructions are sparse or (2) it is not clear from existing culture studies how a correction should be applied. We present new culture data of the relationship between carbonate chemistry and Mg / Ca for the surface -dwelling plank tic species Globigerinoides ruber and compare our results to data compiled from existing studies. We find a coherent relationship between Mg / Ca and the carbonate system and argue that pH rather than [COn is likely to be the dominant control. Applying these new calibrations to data sets for the Paleocene Eocene Thermal Maximum (PETM) and Eocene Oligocene transition (EOT) enables us to produce a more accurate picture of surface hydrology change for the former and a reassessment of the amount of subtropical precursor cooling for the latter. We show that pH-adjusted Mg / Ca and 8180 data sets for the PETM are within error of no salinity change and that the amount of precursor cooling over the EOT has been previously underestimated by 2 degrees C based on Mg / Ca. Finally, we present new laser-ablation data of EOT-age Turborotalia ampliapertura from St. Stephens Quarry (Alabama), for which a solution inductively coupled plasma mass spectrometry (ICPMS) Mg / Ca record is available (Wade et al., 2012). We show that the two data sets are in excellent agreement, demonstrating that fossil solution and laser-ablation data may be directly comparable. Together with an advancing understanding of the effect of Mg / Casw, the coherent picture of the relationship between Mg / Ca and pH that we outline here represents a step towards producing accurate and quantitative palaeotemperatures using this proxy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available