4.7 Article

The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human hematopoietic cells

Journal

BLOOD
Volume 113, Issue 3, Pages 505-516

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2008-01-136218

Keywords

-

Categories

Funding

  1. National Institutes of Health [CA101859]
  2. Pennsylvania Department of Health
  3. United States-Israel Binational Science Foundation (BSF) [2003028-01]

Ask authors/readers for more resources

The c-myb proto-oncogene encodes an obligate hematopoietic cell transcription factor important for lineage commitment, proliferation, and differentiation. Given its critical functions, c-Myb regulatory factors are of great interest but remain incompletely defined. Herein we show that c-Myb expression is subject to post-transcriptional regulation by microRNA (miRNA)-15a. Using a luciferase reporter assay, we found that miR-15a directly binds the 3'-UTR of c-myb mRNA. By transfecting K562 myeloid leukemia cells with a miR-15a mimic, functionality of binding was shown. The mimic decreased c-Myb expression, and blocked the cells in the G(1) phase of cell cycle. Exogenous expression of c-myb mRNA lacking the 3'-UTR partially rescued the miR-15a induced cell-cycle block. Of interest, the miR-15a promoter contained several potential c-Myb protein binding sites. Occupancy of one canonical c-Myb binding site was demonstrated by chromatin immunoprecipitation analysis and shown to be required for miR-15a expression in K562 cells. Finally, in studies using normal human CD34(+) cells, we showed that c-Myb and miR-15a expression were inversely correlated in cells undergoing erythroid differentiation, and that overexpression of miR-15a blocked both erythroid and myeloid colony formation in vitro. In aggregate, these findings suggest the presence of a c-Myb-miR-15a autoregulatory feedback loop of potential importance in human hematopoiesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available