4.6 Article

Preparation, characterization and in vitro photodynamic therapy of a pyropheophorbide-a-conjugated Fe3O4 multifunctional magnetofluorescence photosensitizer

Journal

RSC ADVANCES
Volume 6, Issue 44, Pages 37610-37620

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ra03128e

Keywords

-

Funding

  1. National Natural Science Foundation of China [20972036, 21272048]
  2. Natural Science Foundation of Heilongjiang Province [B20913]
  3. Program for Scientific Technological Innovation Team Construction in Universities of Heilongjiang Province [211TD010]

Ask authors/readers for more resources

Novel pyropheophorbide-a-conjugated multifunctional magnetofluorescence nanoparticles Fe3O4@ SiO2@ APTES@ Glutaryl-PPa (MFNPs) with a mean diameter of 50 nm were strategically designed and prepared for photodynamic therapy (PDT) and medical fluorescence imaging. Chlorin photosensitizer pyropheophorbide-a (PPa) was covalently anchored on the surface of core-shell Fe3O4@ SiO2@ APTES nanoparticles that were prepared via a sol-gel process with a bridging glutaryl group. The phase constitution, morphology, size, chemical properties, magnetic property of the intermediates and final nanoparticles were characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectrometer, zeta potential, vibration sample magnetometer, thermogravimetric analysis, ultraviolet-visible absorption spectra and fluorescent emission spectroscopy. These results showed that the MFNPs have good dispersibility in alcohol and water, excellent magnetization with 17.31 emu g(-1) at 300 K, strong superparamagnetic and good photoluminescence property. The in vitro PDT against the human HeLa cervical cancer cell suggested that MFNPs could permeate the tumor cells quickly and possess suitable lipo-hydro partition coefficient, inducing damage and apoptotic cell death. The cancer cell viability was lowered to 10.18% after treatment with PDT. In addition, the formation of reactive oxygen species in HeLa cells after MFNPs-PDT treatment was studied, which suggested that Type I and Type II photodynamic reactions can occur simultaneously.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available