4.6 Article

A novel Fe3O4/CdTe fluorescence probe for sialic acid detection based on a phenylboronic acid-sialic acid recognition system

Journal

RSC ADVANCES
Volume 6, Issue 1, Pages 481-488

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ra17171g

Keywords

-

Funding

  1. National Natural Science Foundation of China [81173016]
  2. Natural Science Foundation of Jiangsu Education Committee [12KJB350003]
  3. Technology Development Foundation of Nanjing Medical University [2013NJMU023, 2013NJMU024]

Ask authors/readers for more resources

A novel fluorescence method was established for detecting sialic acid (SA) by using phenylboronic acid (PBA)-functionalized Fe3O4/CdTe magnetic nanoparticles as fluorescence probe. Initially, Fe3O4 nanoparticles were modified with amino groups, and then 3-mercapto propionic acid-stabilized CdTe quantum dots (QDs) were covalently linked to the amino-modified Fe3O4 nanoparticles to form Fe3O4/CdTe magnetic fluorescence nanoparticles. Finally, PBA was introduced on the surface of Fe3O4/CdTe to form PBA-functionalized Fe3O4/CdTe magnetic fluorescence nanoparticles. This kind of nanoparticle can specifically recognize SA and its fluorescence intensity is quenched by SA. In addition, the conjugate of the nanoparticles and SA is easy to separate from the sample matrix due to its magnetic properties. Therefore, this nanoparticle can be used as a fluorescence probe to detect SA. Under optimal conditions, the fluorescence intensity of the nano probe was found to be inversely linear with the concentration of SA in a wide range of 50 mg ml(-1)-1.50 mg ml(-1), and the limit of detection was 16 mg ml(-1). The PBA-functionalized Fe3O4/CdTe nano probe was applied to the determination of SA in infant formula, and the result showed high accuracy and precision. The PBA-functionalized Fe3O4/CdTe nano probe has the potential to be used to monitor SA in food.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available