4.7 Article

Absence of SKP2 expression attenuates BCR-ABL-induced myeloproliferative disease

Journal

BLOOD
Volume 112, Issue 5, Pages 1960-1970

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2007-09-113860

Keywords

-

Categories

Funding

  1. National Heart, Lung, and Blood Institute (Bethesda, MD) [HL082978-01]
  2. Leukemia & Lymphoma Society
  3. Department of Defense CML Research Program

Ask authors/readers for more resources

BCR-ABL is proposed to impair cell-cycle control by disabling p27, a tumor suppressor that inhibits cyclin-dependent kinases. We show that in cell lines p27 expression is inversely correlated with expression of SKP2, the F-box protein of SCFSKP2 (SKP1/Cul1/F-box), the E3 ubiquitin ligase that promotes proteasomal degradation of p27. Inhibition of BCR-ABL kinase causes G, arrest, downregulation of SKP2, and accumulation of p27. Ectopic expression of wild-type SKP2, but not a mutant unable to recognize p27, partially rescues cell-cycle progression. A similar regulation pattern is seen in cell lines transformed by FLT3-ITD, JAK2(V617F), and TEL-PDGFR beta, suggesting that the SKP2/p27 conduit may be a universal target for leukernogenic tyrosine kinases. Mice that received transplants of BCR-ABL-infected SKP2(-/-) marrow developed a myeloproliferative syndrome but survival was significantly prolonged compared with recipients of BCR-ABL-expressing SKP2(+/+) marrow. SKP2(-/-) leukemic cells demonstrated higher levels of nuclear p27 than SKP2(+/+) counterparts, suggesting that the attenuation of leukemogenesis depends on increased p27 expression. Our data identify SKP2 as a crucial mediator of BCR-ABL-induced leukemogenesis and provide the first in vivo evidence that SKP2 promotes oncogenesis. Hence, stabilization of p27 by inhibiting its recognition by SCFSKP2 may be therapeutically useful.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available