4.7 Article

Targeting duplex DNA with the reversible reactivity of quinone methides

Journal

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sigtrans.2016.9

Keywords

-

Funding

  1. NSF [CHE-1405123]
  2. NIH [CA81571]
  3. NATIONAL CANCER INSTITUTE [R01CA081571] Funding Source: NIH RePORTER
  4. Division Of Chemistry [1405123] Funding Source: National Science Foundation

Ask authors/readers for more resources

DNA alkylation and crosslinking remains a common and effective strategy for anticancer chemotherapy despite its infamous lack of specificity. Coupling a reactive group to a sequence-directing component has the potential to enhance target selectivity but may suffer from premature degradation or the need for an external signal for activation. Alternatively, quinone methide conjugates may be employed if they form covalent but reversible adducts with their sequence directing component. The resulting self-adducts transfer their quinone methide to a chosen target without an external signal and avoid off-target reactions by alternative intramolecular self-trapping. Efficient transfer is shown to depend on the nature of the quinone methide and the sequence-directing ligand in applications involving alkylation of duplex DNA through a triplex recognition motif. Success required an electron-rich derivative that enhanced the stability of the transient quinone methide intermediate and a polypyrimidine strand of DNA to associate with its cognate polypurine/polypyrimidine target. Related quinone methide conjugates with peptide nucleic acids were capable of quinone methide transfer from their initial precursor but not from their corresponding self-adduct. The active peptide nucleic acid derivatives were highly selective for their complementary target.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available