4.7 Article

Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 16, Issue 11, Pages 7149-7170

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-16-7149-2016

Keywords

-

Funding

  1. EU FP7 grant ECLAIRE [282910]
  2. EU FP7 grant PEGASOS [265148]
  3. BBSRC/Ionicon Analytik GmbH Industrial CASE studentship
  4. Natural Environment Research Council [ceh020001] Funding Source: researchfish
  5. NERC [ceh020001] Funding Source: UKRI

Ask authors/readers for more resources

This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4aEuro-m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketoneaEuro-+aEuro-methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS) and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (using PTR-MS) and eddy covariance (using PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean daytime flux of 1.9aEuro-mgaEuro-m(-2)aEuro-h(-1). Mixing ratios, recorded 4aEuro-m above the canopy, were dominated by methanol with a mean value of 6.2aEuro-ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7aEuro-mgaEuro-m(-2)aEuro-h(-1) was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) isoprene emission algorithms (Guenther et al., 2006). A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC-MS) to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available