4.5 Article

Channel estimation with ISFLA based pilot pattern optimization for MIMO OFDM system

Journal

Publisher

ELSEVIER GMBH, URBAN & FISCHER VERLAG
DOI: 10.1016/j.aeue.2017.07.024

Keywords

OFDM; Pilot allocation; Channel estimation; Mutual coherence; Compressed sensing

Ask authors/readers for more resources

In multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems, the channel state information should be known by the receiver for obtaining transmitted data. Channel estimation algorithms are used to examine the multipath effects of frequency selective Rayleigh fading channels. In this paper, Compressed Sensing (CS) based channel estimation technique is considered for reconstructing the signal with improved spectral efficiency. It requires transmitting the known pilot data to the receiver for estimating channel information. The optimum pilot patterns are selected through reducing the mutual coherence of measurement matrix. In order to maximize the accuracy of sparse channel estimation and to reduce the computational complexity, an optimization algorithm Improved Shuffled Frog Leaping (ISFL) is proposed. When compared with the traditional estimation methods like least squares (LS), and minimal mean square error (MMSE), 4.7% of spectral efficiency is increased with ISFLA based channel estimation. Implementation results show that, by using the proposed algorithm, the bit error rate (BER) and Mean Square Error (MER) performance of the system is increased with 1.5 dB and 2 dB respectively. (C) 2017 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available