4.5 Review

Electron transport phenomena of electroactive bacteria in microbial fuel cells: a review of Proteus hauseri

Journal

BIORESOURCES AND BIOPROCESSING
Volume 4, Issue -, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1186/s40643-017-0183-3

Keywords

Proteus hauseri; Reductive decolorization; Bioelectricity generation; Bioremediation

Funding

  1. Ministry of Sciences and Technology, Taiwan [MOST106-2621-M-197-001, MOST105-2622-E-197-012-CC3, MOST105-2221-E-197-022, MOST-105-2221-E-006-225-MY3]
  2. National Cheng Kung University

Ask authors/readers for more resources

This review tended to decipher the expression of electron transfer capability (e.g., biofilm formation, electron shuttles, swarming motility, dye decolorization, bioelectricity generation) to microbial fuel cells (MFCs). As mixed culture were known to perform better than pure microbial cultures for optimal expression of electrochemically stable activities to pollutant degradation and bioenergy recycling, Proteus hauseri isolated as a keystone species to maintain such ecologically stable potential for power generation in MFCs was characterized. P. hauseri expressed outstanding performance of electron transfer (ET)-associated characteristics [e.g., reductive decolorization (RD) and bioelectricity generation (BG)] for electrochemically steered bioremediation even though it is not a nanowire-generating bacterium. This review tended to uncover taxonomic classification, genetic or genomic characteristics, enzymatic functions, and bioelectricity-generating capabilities of Proteus spp. with perspectives for electrochemical practicability. As a matter of fact, using MFCs as a tool to evaluate ET capabilities, dye decolorizer(s) could clearly express excellent performance of simultaneous bioelectricity generation and reductive decolorization (SBG and RD) due to feedback catalysis of residual decolorized metabolites (DMs) as electron shuttles (ESs). Moreover, the presence of reduced intermediates of nitroaromatics or DMs as ESs could synergistically augment efficiency of reductive decolorization and power generation. With swarming mobility, P. hauseri could own significant biofilm-forming capability to sustain ecologically stable consortia for RD and BG. This mini-review evidently provided lost episodes of great significance about bioenergy-steered applications in myriads of fields (e.g., biodegradation, biorefinery, and electro-fermentation).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available