3.8 Article

Detection of Emerging Faults on Industrial Gas Turbines Using Extended Gaussian Mixture Models

Journal

INTERNATIONAL JOURNAL OF ROTATING MACHINERY
Volume 2017, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2017/5435794

Keywords

-

Funding

  1. Siemens Industrial Turbomachinery, Lincoln, UK

Ask authors/readers for more resources

This paper extends traditional Gaussian mixture model (GMM) techniques to provide recognition of operational states and detection of emerging faults for industrial systems. A variational Bayesian method allows a GMM to cluster with its mixture components to facilitate the extraction of steady-state operational behaviour; this is recognised as being a primary factor in reducing the susceptibility of alternative prognostic/diagnostic techniques, which would initiate false-alarms resulting fromcontrol set-point and load changes. Furthermore, a GMM with an outlier component is discussed and applied for direct novelty/fault detection. An advantage of the variational Bayesian method over traditional predefined thresholds is the extraction of steady-state data during both full-and part-load cases, and a primary advantage of the GMM with an outlier component is its applicability for novelty detection when there is a lack of prior knowledge of fault patterns. Results obtained from the real-time measurements on the operational industrial gas turbines have shown that the proposed technique provides integrated preprocessing, benchmarking, and novelty/fault detection methodology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available