4.3 Article

Amyloid fibrils as functionalizable components of nanocomposite materials

Journal

BIOTECHNOLOGY PROGRESS
Volume 28, Issue 1, Pages 248-256

Publisher

WILEY
DOI: 10.1002/btpr.726

Keywords

amyloid protein fibril; bionanocomposite; thermomechanical properties; microstructure; poly(vinyl alcohol)

Ask authors/readers for more resources

Amyloid fibrils are a form of protein nanofiber that show promise as components of multifunctional bionanomaterials. In this work, native bovine insulin and bovine insulin that had been previously converted into amyloid fibrils were combined with poly(vinyl alcohol) (PVOH) via solution casting to determine the effect of fibrillization on the thermomechanical properties of the resulting composite. The synthesis method was found to preserve the amyloid fibril structure and properties of the resulting fibril-PVOH composite were investigated. At a filling level of 0.6 wt %, the fibril-reinforced PVOH was 15% stiffer than the PVOH control. Various properties of the films, including the glass transition temperature, degradation temperature, microstructure, and film morphology were characterized. Although more work is required to optimize the properties of the composites, this study provides proof of principle that incorporation of amyloid fibrils into a polymeric material can impart useful changes to the mechanical and morphological properties of the films. (c) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available