4.4 Article

Acute mechanical overload increases IGF-I and MMP-9 mRNA in 3D tissue-engineered skeletal muscle

Journal

BIOTECHNOLOGY LETTERS
Volume 36, Issue 5, Pages 1113-1124

Publisher

SPRINGER
DOI: 10.1007/s10529-014-1464-y

Keywords

Mechanical load; Hypertrophy; Myotubes; Insulin-like growth factor binding proteins; Tissue engineering

Funding

  1. National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) [NC/K00087X/1, G0900762/1] Funding Source: researchfish
  2. National Centre for the Replacement, Refinement and Reduction of Animals in Research [G0900762/1, NC/K00087X/1] Funding Source: Medline

Ask authors/readers for more resources

Skeletal muscle (SkM) is a tissue that responds to mechanical load following both physiological (exercise) or pathophysiological (bed rest) conditions. The heterogeneity of human samples and the experimental and ethical limitations of animal studies provide a rationale for the study of SkM plasticity in vitro. Many current in vitro approaches of mechanical loading of SkM disregard the three-dimensional (3D) structure in vivo. Tissue engineered 3D SkM, that displays highly aligned and differentiated myotubes, was used to investigate mechano-regulated gene transcription of genes implicated in hypertrophy/atrophy. Static loading (STL) and ramp loading (RPL) at 10 % strain for 60 min were used as mechano-stimulation with constructs sampled immediately for RNA extraction. STL increased IGF-I mRNA compared to both RPL and CON (control, p = 0.003 and 0.011 respectively) whilst MMP-9 mRNA increased in STL and RPL compared to CON (both p < 0.05). IGFBP-2 mRNA was differentially regulated in RPL and STL compared to CON (p = 0.057), whilst a reduction in IGFBP-5 mRNA was found for STL and RPL compared to CON (both p < 0.05). There was no effect in the expression of putative atrophic genes, myostatin, MuRF-1 and MAFBx (all p > 0.05). These data demonstrate a transcriptional signature associated with SkM hypertrophy within a tissue-engineered model that more greatly recapitulates the in vivo SkM structure compared previously published studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available