4.4 Article

Compartmental culture of embryonic stem cell-derived neurons in microfluidic devices for use in axonal biology

Journal

BIOTECHNOLOGY LETTERS
Volume 32, Issue 8, Pages 1063-1070

Publisher

SPRINGER
DOI: 10.1007/s10529-010-0280-2

Keywords

Axonal biology; Axonal isolation; Compartmental culture; Embryonic stem cell; Microfluidic; Neuronal differentiation

Funding

  1. National Research Foundation of Korea [20090065628]
  2. National Research Foundation of Korea [과C6A2604] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Axonal pathology has been clearly implicated in neurodegenerative diseases making the compartmental culture of neurons a useful research tool. Primary neurons have already been cultured in compartmental microfluidic devices but their derivation from an animal is a time-consuming and difficult work and has a limit in their sources. Embryonic stem cell (ESC)-derived neurons (ESC_Ns) overcome this limit, since ESCs can be renewed without limit and can be differentiated into ESC_Ns by robust and reproducible protocols. In this research, ESC_Ns were derived from mouse ESCs in compartmental microfluidic devices, and their axons were isolated from the somal cell bodies. Once embryoid bodies (EBs) were localized in the microfluidic culture chamber, ESC_Ns spread out from the EBs and occupied the cell culture chamber. Their axons traversed the microchannels and finally were isolated from the somata, providing an arrangement comparable to dissociated primary neurons. This ESC_N compartmental microfluidic culture system not only offers a substitute for the primary neuron counterpart system but also makes it possible to make comparisons between the two systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available