4.4 Article

Strain-dependent viscoelastic behaviour and rupture force of single chondrocytes and chondrons under compression

Journal

BIOTECHNOLOGY LETTERS
Volume 31, Issue 6, Pages 803-809

Publisher

SPRINGER
DOI: 10.1007/s10529-009-9939-y

Keywords

Biomechanics; Chondrocytes; Chondrons; Micromanipulation; Rupture; Viscoelasticity

Funding

  1. Engineering and Physical Sciences Research Council [EP/C511727/1]
  2. Engineering and Physical Sciences Research Council [EP/C511735/1, EP/C511727/1] Funding Source: researchfish

Ask authors/readers for more resources

The chondron in articular cartilage includes the chondrocyte and its surrounding pericellular matrix (PCM). Single chondrocytes and chondrons were compressed between two parallel surfaces by a micromanipulation technique to investigate their biomechanical properties and to discover the mechanical significance of the PCM. The force imposed on the cells was measured directly during deformation at various compression speeds and deformations up to cell rupture. When the deformation at the end of compression was 50%, relaxation showed that the cells were viscoelastic, but this viscoelasticity was generally insignificant at 30% deformation or lower. When the deformation was 70%, the cells had deformed plastically. Chondrons ruptured at a mean deformation of 85 +/- A 1%, whilst chondrocytes ruptured at a mean deformation of 78 +/- A 1%. Chondrons were generally stiffer than chondrocytes and showed less viscoelastic behaviour than chondrocytes. Thus, the PCM significantly influences the mechanical properties of the cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available