4.2 Article

The Impact of Circulating Mitochondrial DNA on Cardiomyocyte Apoptosis and Myocardial Injury After TLR4 Activation in Experimental Autoimmune Myocarditis

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 42, Issue 2, Pages 713-728

Publisher

KARGER
DOI: 10.1159/000477889

Keywords

TLR4; EAM; Circulating mtDNA; ROS stress; TLR9

Funding

  1. National Natural Science Foundation of China [81470496, 81573710]
  2. Chinese Medicine Science Foundation of Shanghai Health and Family Planning Committee [2014JZ006A]

Ask authors/readers for more resources

Background/Aims: Mitochondrial DNA (mtDNA), acting as a newly found 'dangerassociated molecular patterns' (DAMPs), is released into circulation upon tissue injury and performs as a considerable activator of inflammation and immune response. However, the role of circulating mtDNA in experimental autoimmune myocarditis (EAM) as well as Toll like receptor4 (TLR4) mediated cardiac inflammation and injury remains unknown. Methods: A model of EAM was established in BALB/c mice by immunization with porcine cardiac myosin. Lipopolysaccharide (LPS) was used to stimulate TLR4 activation in EAM mice and H9C2 cells. Results: LPS stimulation significantly aggravated cardiac inflammation and tissue injury in EAM, as demonstrated by increased myocardium inflammatory cell infiltration, and upregulated inflammatory cytokines and troponin I(TnI) level in serum. Circulating mtDNA level was increased in EAM and TLR4 activation led to a greater elevation, which may be related to Reactive oxygen species (ROS) stress involved mtDNA damage characterized by reduced mtDNA copy number in myocardium tissue. In addition, the expression of Toll like receptor9 (TLR9), a ligand of mtDNA, was significantly up-regulated in the myocardium of EAM and EAM LPS group; meanwhile, TLR9 inhibition by ODN 2088 caused an inhibited apoptosis in LPS treated H9C2 cells. Moreover, in EAM and EAM LPS group, simultaneously giving ODN 2088 treatment significantly ameliorated cardiac inflammation and tissue injury compared with untreated group. Conclusion: Increased circulating mtDNA combined with upregulated TLR9 expression may corporately play a role in EAM as well as TLR4 activation mediated cardiac inflammation and injury. (C) 2017 The Author(s) Published by S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available