4.6 Article

SCExAO/CHARIS Near-infrared Direct Imaging, Spectroscopy, and Forward-Modeling of kappa And b: A Likely Young, Low-gravity Superjovian Companion

Journal

ASTRONOMICAL JOURNAL
Volume 156, Issue 6, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.3847/1538-3881/aae9ea

Keywords

planetary systems; stars: early-type; stars:individual: (HD 222439); techniques: high angular resolution

Funding

  1. NASA Senior Postdoctoral Fellowship
  2. NSF Graduate Research Fellowship
  3. U.S. Fulbright program
  4. SC Space Grant

Ask authors/readers for more resources

We present SCExAO/CHARIS high-contrast imaging/JHK integral field spectroscopy of kappa And b, a directly imaged low-mass companion orbiting a nearby B9V star. We detect kappa And b at a high signal-to-noise ratio and extract high-precision spectrophotometry using a new forward-modeling algorithm for (A-)LOCI complementary to KLIP-FM developed by Pueyo et al. kappa And b's spectrum best resembles that of a low-gravity LO-L1 dwarf (L0-L1 gamma). Its spectrum and luminosity are very well matched by 2MASS J0141-4633 and several other 12.5-15 M-J free-floating members of the 40 Myr old Tuc-Hor Association, consistent with a system age derived from recent interferometric results for the primary, a companion mass at/near the deuterium-burning limit (13(-2)(+12) M-J), and a companion-to-primary mass ratio characteristic of other directly imaged planets (q similar to 0.0051(-0.001)(+0.005)). We did not unambiguously identify additional, more closely orbiting companions brighter and more massive than kappa And b down to p similar to 0.'' 3 (15 au). SCExAO/CHARIS and complementary Keck/NIRC2 astrometric points reveal clockwise orbital motion. Modeling points toward a likely eccentric orbit: a subset of acceptable orbits include those that are aligned with the star's rotation axis. However, kappa And b's semimajor axis is plausibly larger than 55 au and in a region where disk instability could form massive companions. Deeper high-contrast imaging of kappa And and low-resolution spectroscopy from extreme adaptive optics systems such as SCExAO/CHARIS and higher-resolution spectroscopy from Keck/OSIRIS or, later, IRIS on the Thirty Meter Telescope could help to clarify kappa And b's chemistry and whether its spectrum provides an insight into its formation environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available