4.7 Article

Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides

Journal

BIOTECHNOLOGY FOR BIOFUELS
Volume 4, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1754-6834-4-5

Keywords

-

Funding

  1. DOE Great Lakes Bioenergy Research Center (GLBRC)
  2. Office of Science, Office of Biological and Environmental Research
  3. The Board of Regents of the University of Wisconsin System [DE-FC02-07ER64494]
  4. US Department of Energy

Ask authors/readers for more resources

Background: High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. This is especially important for alkaline pretreatments such as Ammonia fiber expansion (AFEX) pretreated corn stover. Hence, a diverse set of hemicellulases supplemented along with cellulases is necessary for high recovery of monosaccharides. Results: The core fungal cellulases in the optimal cocktail include cellobiohydrolase I [CBH I; glycoside hydrolase (GH) family 7A], cellobiohydrolase II (CBH II; GH family 6A), endoglucanase I (EG I; GH family 7B) and beta-glucosidase (beta G; GH family 3). Hemicellulases tested along with the core cellulases include xylanases (LX1, GH family 10; LX2, GH family 10; LX3, GH family 10; LX4, GH family 11; LX5, GH family 10; LX6, GH family 10), beta-xylosidase (L beta X; GH family 52), alpha-arabinofuranosidase (LArb, GH family 51) and alpha-glucuronidase (L alpha Gl, GH family 67) that were cloned, expressed and/or purified from different bacterial sources. Different combinations of these enzymes were tested using a high-throughput microplate based 24 h hydrolysis assay. Both family 10 (LX3) and family 11 (LX4) xylanases were found to most efficiently hydrolyze AFEX pretreated corn stover in a synergistic manner. The optimal mass ratio of xylanases (LX3 and LX4) to cellulases (CBH I, CBH II and EG I) is 25:75. L beta X (0.6 mg/g glucan) is crucial to obtaining monomeric xylose (54% xylose yield), while LArb (0.6 mg/g glucan) and L alpha Gl (0.8 mg/g glucan) can both further increase xylose yield by an additional 20%. Compared with Accellerase 1000, a purified cocktail of cellulases supplemented with accessory hemicellulases will not only increase both glucose and xylose yields but will also decrease the total enzyme loading needed for equivalent yields. Conclusions: A diverse set of accessory hemicellulases was found necessary to enhance the synergistic action of cellulases hydrolysing AFEX pretreated corn stover. High glucose (around 80%) and xylose (around 70%) yields were achieved with a moderate enzyme loading (similar to 20 mg protein/g glucan) using an in-house developed cocktail compared to commercial enzymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available