4.7 Article

Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production

Journal

BIOTECHNOLOGY FOR BIOFUELS
Volume 3, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1754-6834-3-11

Keywords

-

Funding

  1. US Department of Energy through the DOE Great Lakes Bioenergy Research Center (GLBRC) [FC02-07ER64494]

Ask authors/readers for more resources

Background: Fermentations using Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST), and Zymomonas mobilis AX101 are compared side-by-side on corn steep liquor (CSL) media and the water extract and enzymatic hydrolysate from ammonia fiber expansion (AFEX)-pretreated corn stover. Results: The three ethanologens are able produce ethanol from a CSL-supplemented co-fermentation at a metabolic yield, final concentration and rate greater than 0.42 g/g consumed sugars, 40 g/L and 0.7 g/L/h (0-48 h), respectively. Xylose-only fermentation of the tested ethanologenic bacteria are five to eight times faster than 424A(LNH-ST) in the CSL fermentation. All tested strains grow and co-ferment sugars at 15% w/v solids loading equivalent of ammonia fiber explosion (AFEX)pretreated corn stover water extract. However, both KO11 and 424A(LNH-ST) exhibit higher growth robustness than AX101. In 18% w/w solids loading lignocellulosic hydrolysate from AFEX pretreatment, complete glucose fermentations can be achieved at a rate greater than 0.77 g/L/h. In contrast to results from fermentation in CSL, S. cerevisiae 424A(LNH-ST) consumed xylose at the greatest extent and rate in the hydrolysate compared to the bacteria tested. Conclusions: Our results confirm that glucose fermentations among the tested strains are effective even at high solids loading (18% by weight). However, xylose consumption in the lignocellulosic hydrolysate is the major bottleneck affecting overall yield, titer or rate of the process. In comparison, Saccharomyces cerevisiae 424A(LNH-ST) is the most relevant strains for industrial production for its ability to ferment both glucose and xylose from undetoxified and unsupplemented hydrolysate from AFEX-pretreated corn stover at high yield.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available