4.3 Article

Isolation and identification of Paracoccus sp FD3 and evaluation of its formaldehyde degradation kinetics

Journal

BIOTECHNOLOGY AND BIOPROCESS ENGINEERING
Volume 18, Issue 2, Pages 300-305

Publisher

KOREAN SOC BIOTECHNOLOGY & BIOENGINEERING
DOI: 10.1007/s12257-012-0449-8

Keywords

formaldehyde; Paracoccus; degradation kinetics; first-order model; luong model

Funding

  1. National High Technology and Development Program (863) of China [2009AA032903]

Ask authors/readers for more resources

A formaldehyde-degrading bacterium strain, FD3, was isolated from contaminated soil and identified as Paracoccus sp. based on partial 16S rRNA gene sequence analysis. In batch culture, the bacterium metabolized 5,000 and 8,000 mg/L formaldehyde completely within 16 and 18 h, respectively, at 30A degrees C (pH 7.0) with agitation at 150 rpm. The degradation kinetics was found to follow a first-order model at all initial formaldehyde concentrations with regression values greater than 0.99. Formaldehyde degradation rates increased from 532.37 to 2283.04 mg/L/h as the initial concentration of formaldehyde was increased from 1,000 to 8,000 mg/L. The growth of strain FD3 on formaldehyde as a sole carbon and energy source was well described by the Luong model with a maximal specific growth rate of 0.1754/h, a half-saturation constant of 309.02 mg/L, and a maximum substrate concentration of 3875.53 mg/L. Due to its high tolerance and degradation capacity to formaldehyde, Paracoccus sp., FD3 is considered an excellent candidate for use in degrading formaldehyde in wastewaters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available