4.3 Article

Biosorption of heavy metals from acid mine drainage onto biopolymers (chitin and α (1,3) β-D-glucan) from industrial biowaste exhausted brewer's yeasts (Saccharomyces cerevisiae L.)

Journal

BIOTECHNOLOGY AND BIOPROCESS ENGINEERING
Volume 16, Issue 6, Pages 1262-1272

Publisher

KOREAN SOC BIOTECHNOLOGY & BIOENGINEERING
DOI: 10.1007/s12257-010-0465-5

Keywords

biopolymers; biosorption; chitin; beta-glucans; isotherms; kinetics; heavy metals; mine drainage; toxicity; industrial wastes; brewer's yeasts

Funding

  1. Iberdrola Instituto Tecnologico
  2. Centro de Investigacion y Desarrollo Tecnologico del Agua (CIDTA) of the University of Salamanca

Ask authors/readers for more resources

A biosorption process has been developed for the bioremediation of heavy metal-contaminated acid drainages from Merladet and Faith open-cast mines, located in western Spain. The process is based on the physico-chemical properties for the adsorption, ion exchange, and complexation of metal ions by biopolymers (chitin and alpha (1,3) beta-D-glucan) from industrial biowaste exhausted brewer's yeast (Saccharomyces cerevisiae L.). Firstly, the chemical composition (U, Mn, Al, Fe, Cu, Zn, and Ni) and the physico-chemical and ecological states of these acid mine drainages were characterised. Furthermore, the selectivity for Zn, Cu, Mn, Ni, and Al the first order kinetics and the performance of the metals biosorption process by exhausted brewer's yeast were evaluated with polluted acid synthetic waters and mine drainages. The biosorption equilibria were reached in 10 similar to 15 min following Langmuir type isotherms with higher affinity constants for metal-biosorbent binding for synthetic waters than for acid mine drainages. The efficiency of the process with real water samples was markedly lower for the case of Mn, and zero for Zn and Al. An antagonistic interference on the biosorption of a metal due to the presence of other metals is proposed. Finally, the ecotoxicity of the acid mine drainage was removed when it was incubated with brewer's yeast trapped in polyurethane foam.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available