4.3 Article

Characterization of Hydrogen Production by Engineered Escherichia coli Strains Using Rich Defined Media

Journal

BIOTECHNOLOGY AND BIOPROCESS ENGINEERING
Volume 15, Issue 4, Pages 686-695

Publisher

KOREAN SOC BIOTECHNOLOGY & BIOENGINEERING
DOI: 10.1007/s12257-009-3139-4

Keywords

hydrogen production; hydrogenase; metabolic engineering; mixed-acid fermentation; rich defined media

Funding

  1. US DoE [DE-FG02-ER1577]

Ask authors/readers for more resources

Fermentation conditions (e.g., pressure and medium) are well-documented to impact the yield of microbial products in bioreactors. In this study we used carefully controlled batch fermentations to characterize hydrogen production from engineered strains of Escherichia coli and developed a rapid method of inducing hydrogen production in previously aerobically grown cells by using a rich defined medium. Our results indicated that rich defined media activated hydrogen production from aerobic pre-cultures with no lag time and yielded more hydrogen and biomass than the commonly used minimal media. Under these conditions, deletion of both uptake hydrogenase 1 (Delta hyaAB) and hydrogenase 2 (Delta hybABC) was shown to increase hydrogen yield from glucose by 10% over the wildtype strain BW25113. However, the deletion of the repressor for the formate-hydrogen-lyase (FHL-1) complex (Delta hycA) did not further increase hydrogen production. Additional deletion of lactate dehydrogenase (ldhA) and fumarate reductase (frdBC) of the mixed-acid fermentation pathway increased hydrogen yield by 22 and 23%, respectively. Interestingly, combined elimination of ldhA and frdBC in the uptake and hycA null strain increased hydrogen yield from 1.37 to 1.82 mol/mol glucose, obtaining 91% of the theoretical maximum hydrogen yield. Our results indicated the advantage of using rich defined media for inducing hydrogen production. This study represents the first report of characterizing metabolically engineered E. coli strains in batch hydrogen fermentation using rich defined media under tightly controlled conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available