4.6 Article

Computational fluid dynamic modeling of alternating tangential flow filtration for perfusion cell culture

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 115, Issue 11, Pages 2751-2759

Publisher

WILEY
DOI: 10.1002/bit.26813

Keywords

alternating tangential flow filtration; computational fluid dynamics; cross flow velocity; Starling flow

Funding

  1. Bioprocess Engineering group at Boehringer Ingelheim Inc. (Fremont, CA)

Ask authors/readers for more resources

Alternating tangential flow (ATF) filtration has been successfully adopted as a low shear cell separation device in many perfusion-based processes. The reverse flow per cycle is used to minimize fouling compared with tangential flow filtration. Currently, modeling of the ATF system is based on empirically derived formulas, leading to oversimplification of model parameters. In this study, an experimentally validated porous computational fluid dynamic (CFD) model was used to predict localized fluid behavior and pressure profiles in the ATF membrane for both water and supernatant solutions. The results provided numerical evidence of Starling flow phenomena that has been theorized but not previously proven for the current operating parameters. Additionally, feed cross flow velocity was shown to significantly impact the localized flux distribution; higher feed cross flow rates lead to an increased localized permeate flux as well as irreversible and reversible fouling resistance. Further, the small average permeate flux values of 2Lm(-2)h(-1) traditionally used in perfusion bioreactor membranes lead to approximately 50% of the membrane length utilized for permeate flow during each pressure and exhaust phase, leading to a full membrane utilization during one ATF cycle. Our preliminary CFD results demonstrate that local flux and resistance distribution further elucidate the dynamics of ATF membrane fouling in a perfusion-based system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available