4.6 Article

Effect of Liquid Hot Water Pretreatment Severity on Properties of Hardwood Lignin and Enzymatic Hydrolysis of Cellulose

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 112, Issue 2, Pages 252-262

Publisher

WILEY
DOI: 10.1002/bit.25349

Keywords

lignin; hardwood; liquid hot water pretreatment; severity; lignin glass transition temperature; AIL/ASL ratio

Funding

  1. DOE [GO18103, DE-FG02-06ER64301]
  2. Indiana Corn Growers [P205696]
  3. Purdue University Agricultural Research Programs, USDA Hatch Projects [10677, 10646]
  4. Mascoma Corporation

Ask authors/readers for more resources

Lignin, one of the major components of lignocellulosic biomass, plays an inhibitory role on the enzymatic hydrolysis of cellulose. This work examines the role of lignin in pretreated hardwood, where extents of cellulose hydrolysis decrease, rather than increase with increasing severity of liquid hot water pretreatment. Hardwood pretreated with liquid hot water at severities ranging from log R-o = 8.25 to 12.51 resulted in 80-90% recovery of the initial lignin in the residual solids. The ratio of acid insoluble lignin (AIL) to acid soluble lignin (ASL) increased and the formation of spherical lignin droplets on the cell wall surface was observed as previously reported in the literature. When lignins were isolated from hardwoods pretreated at increasing severities and characterized based on glass transition temperature (T-g), the Tg of isolated lignins was found to increase from 171 to 180 degrees C as the severity increased from log R-o = 10.44 to 12.51. The increase in Tg suggested that the condensation reactions of lignin molecules occurred during pretreatment and altered the lignin structure. The contribution of the changes in lignin properties to enzymatic hydrolysis were examined by carrying out Avicel hydrolysis in the presence of isolated lignins. Lignins derived from more severely pretreated hardwoods had higher Tg values and showed more pronounced inhibition of enzymatic hydrolysis. (C) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available