4.6 Article

The dynamics of the CHO host cell protein profile during clarification and protein A capture in a platform antibody purification process

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 110, Issue 1, Pages 240-251

Publisher

WILEY-BLACKWELL
DOI: 10.1002/bit.24607

Keywords

host cell protein; Chinese hamster ovary cells; downstream processing; monoclonal antibody; protein A chromatography; 2D-PAGE

Funding

  1. BBSRC
  2. EPSRC
  3. industrial club members under the Bioprocessing Research Industry Club (BRIC) initiative [BB/G010307/1]
  4. Biotechnology and Biological Sciences Research Council [BB/G010358/1, BB/G010307/1, BB/L002310/1] Funding Source: researchfish
  5. BBSRC [BB/L002310/1, BB/G010307/1, BB/G010358/1] Funding Source: UKRI

Ask authors/readers for more resources

Recombinant protein products such as monoclonal antibodies (mAbs) for use in the clinic must be clear of host cell impurities such as host cell protein (HCP), DNA/RNA, and high molecular weight immunogenic aggregates. Despite the need to remove and monitor HCPs, the nature, and fate of these during downstream processing (DSP) remains poorly characterized. We have applied a proteomic approach to investigate the dynamics and fate of HCPs in the supernatant of a mAb producing cell line during early DSP including centrifugation, depth filtration, and protein A capture chromatography. The primary clarification technique selected was shown to influence the HCP profile that entered subsequent downstream steps. MabSelect protein A chromatography removed the majority of contaminating proteins, however using 2D-PAGE we could visualize not only the antibody species in the eluate (heavy and light chain) but also contaminant HCPs. These data showed that the choice of secondary clarification impacts upon the HCP profile post-protein A chromatography as differences arose in both the presence and abundance of specific HCPs when depth filters were compared. A number of intracellularly located HCPs were identified in protein A elution fractions from a Null cell line culture supernatant including the chaperone Bip/GRP78, heat shock proteins, and the enzyme enolase. We demonstrate that the selection of early DSP steps influences the resulting HCP profile and that 2D-PAGE can be used for monitoring and identification of HCPs post-protein A chromatography. This approach could be used to screen cell lines or hosts to select those with reduced HCP profiles, or to identify HCPs that are problematic and difficult to remove so that cell-engineering approaches can be applied to reduced, or eliminate, such HCPs. Biotechnol. Bioeng. 2013; 110: 240251. (C) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available