4.6 Article

Implementation of proton transfer reaction-mass spectrometry (PTR-MS) for advanced bioprocess monitoring

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 109, Issue 12, Pages 3059-3069

Publisher

WILEY
DOI: 10.1002/bit.24579

Keywords

on-line monitoring; bioprocess monitoring; E; coli fermentation process; proton transfer reaction-mass spectrometry (PTR-MS); volatile organic compound (VOC)

Funding

  1. Federal Ministry of Economy, Family and Youth (BMWFJ)
  2. Federal Ministry of Transport, Innovation and Technology (bmvit)
  3. Styrian Business Promotion Agency SFG
  4. Standortagentur Tirol
  5. ZIT-Technology Agency of the City of Vienna
  6. ZIT-Technology Agency of the City of Vienna through the COMET

Ask authors/readers for more resources

We report on the implementation of proton transfer reaction-mass spectrometry (PTR-MS) technology for on-line monitoring of volatile organic compounds (VOCs) in the off-gas of bioreactors. The main part of the work was focused on the development of an interface between the bioreactor and an analyzer suitable for continuous sampling of VOCs emanating from the bioprocess. The permanently heated sampling line with an inert surface avoids condensation and interaction of volatiles during transfer to the PTR-MS. The interface is equipped with a sterile sinter filter unit directly connected to the bioreactor headspace, a condensate trap, and a series of valves allowing for dilution of the headspace gas, in-process calibration, and multiport operation. To assess the aptitude of the entire system, a case study was conducted comprising three identical cultivations with a recombinant E. coli strain, and the volatiles produced in the course of the experiments were monitored with the PTR-MS. The high reproducibility of the measurements proved that the established sampling interface allows for reproducible transfer of volatiles from the headspace to the PTR-MS analyzer. The set of volatile compounds monitored comprises metabolites of different pathways with diverse functions in cell physiology but also volatiles from the process matrix. The trends of individual compounds showed diverse patterns. The recorded signal levels covered a dynamic range of more than five orders of magnitude. It was possible to assign specific volatile compounds to distinctive events in the bioprocess. The presented results clearly show that PTR-MS was successfully implemented as a powerful bioprocess-monitoring tool and that access to volatiles emitted by the cells opens promising perspectives in terms of advanced process control. Biotechnol. Bioeng. 2012; 109: 30593069. (C) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available