4.6 Article

Study and design of stability in GH5 cellulases

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 109, Issue 1, Pages 31-44

Publisher

WILEY-BLACKWELL
DOI: 10.1002/bit.23280

Keywords

endoglucanases; molecular dynamics; thermal stability; enzyme engineering; mutagenesis; cellulase

Funding

  1. USDA-CSREES through the Biodesign and Bioprocessing Center at Virginia Tech

Ask authors/readers for more resources

Thermostable enzymes that hydrolyze lignocellulosic materials provide potential advantages in process configuration and enhancement of production efficiency over their mesophilic counterparts in the bioethanol industry. In this study, the dynamics of beta-1,4-endoglucanases (EC: 3.2.1.4) from family 5 of glycoside hydrolases (GH5) were investigated computationally. The conformational flexibility of 12 GH5 cellulases, ranging from psychrophilic to hyperthermophilic, was investigated by molecular dynamics (MD) simulations at elevated temperatures. The results indicated that the protein flexibility and optimum activity temperatures are appreciably correlated. Intra-protein interactions, packing density and solvent accessible area were further examined in crystal structures to investigate factors that are possibly involved in higher rigidity of thermostable cellulases. The MD simulations and the rules learned from analyses of stabilizing factors were used in design of mutations toward the thermostabilization of cellulase C, one of the GH5 endoglucanases. This enzyme was successfully stabilized both chemically and thermally by introduction of a new disulfide cross-link to its highly mobile 56-amino acid subdomain. Biotechnol. Bioeng. 2012;109: 3144. (c) 2011 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available