4.6 Article

Preventing spontaneous genetic rearrangements in the transgene cassettes of adenovirus vectors

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 109, Issue 3, Pages 719-728

Publisher

WILEY
DOI: 10.1002/bit.24342

Keywords

adenovirus; virus; vaccine; vector

Funding

  1. European Vaccine Initiative
  2. Oxford Martin School
  3. Gates Foundation through the Foundation for NIH
  4. Wellcome Trust
  5. NIHR Oxford Biomedical Research Centre

Ask authors/readers for more resources

First-generation, E1/E3-deleted adenoviral vectors with diverse transgenes are produced routinely in laboratories worldwide for development of novel prophylactics and therapies for a variety of applications, including candidate vaccines against important infectious diseases, such as HIV/AIDS, tuberculosis, and malaria. Here, we show, for two different transgenes (both encoding malarial antigens) inserted at the E1 locus, that rare viruses containing a transgene-inactivating mutation exhibit a selective growth advantage during propagation in E1-complementing HEK293 cells, such that they rapidly become the major or sole species in the viral population. For one of these transgenes, we demonstrate that viral yield and cytopathic effect are enhanced by repression of transgene expression in the producer cell line, using the tetracycline repressor system. In addition to these transgene-inactivating mutations, one of which occurred during propagation of the pre-viral genomic clone in bacteria, and the other after viral reconstitution in HEK293 cells, we describe two other types of mutation, a small deletion and a gross rearranging duplication, in one of the transgenes studied. These were of uncertain origin, and the effects on transgene expression and viral growth were not fully characterized. We demonstrate that, together with minor protocol modifications, repression of transgene expression in HEK293 cells during viral propagation enables production of a genetically stable chimpanzee adenovirus vector expressing a malarial antigen which had previously been impossible to derive. These results have important implications for basic and pre-clinical studies using adenoviral vectors and for derivation of adenoviral vector products destined for large-scale amplification during biomanufacture. Biotechnol. Bioeng. 2012; 109:719728. (C) 2011 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available